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Abstract. Gamow-Teller (GT) and spin-dipole (SD) states in 208Bi are studied by using self-consistent
Hartree-Fock + Tamm-Dancoff approximation taking into account the coupling to the continuum. Most
of SD strength is found at the excitation energy Ex ≈ 25MeV with a very broad width, which agrees
with recent experimental observations. It is shown that Landau damping effect is responsible for the large
width of SD peak, while the escape width is found to be at most 1MeV. We study also electric dipole (E1)
transitions between GT and SD states in 208Bi. Main E1 transitions for 0− and 1− states are found near
excitation energy expected from Brink’s hypothesis in which SD states are considered as E1 resonances
built on the GT state. Calculated E1 transition strengths between GT and SD states are compared with
the analytic sum rules within one-particle one-hole (1p-1h) configuration space and within both 1p-1h and
2p-2h model space.

PACS. 24.30.Cz Giant resonances – 21.10.Pc Single-particle levels and strength functions – 23.20.Lv
Gamma transitions and level energies – 21.60.Jz Hartree-Fock and random-phase approximations

1 Introduction

Spin excitation modes in nuclei such as magnetic dipole
(M1), Gamow-Teller (GT) and spin-dipole (SD) excita-
tions have been studied intensively both theoretically [1–5]
and experimentally [6–10] in a broad region of mass chart.
Especially the quenching and spreading of M1 and GT
strength are interesting and stimulating subject under in-
tensive study. Recently, the sum rule strength of GT tran-
sitions of 90Nb was studied quantitatively by charge ex-
change reactions [7], and the importance of the coupling
to many-particle and many-hole states was pointed out
on the quenching of the transition strength. Experimental
investigations of GT and SD strengths in 208Bi have been
done also at RCNP by 208Pb(3He,t) 208Bi reactions [8].
The width of SD peak is found to be about 8MeV, which
is twice as large as that of GT in 208Bi.
As a theoretical model, the self-consistent Hartree-

Fock (HF) + random phase approximation (RPA) or
Tamm-Dancoff approximation (TDA) has been exten-
sively applied for giant resonances in a broad region of
mass table [11,12]. The same model was used for the spin
dependent excitations [2,3,13,14]. It was shown that the
model predicts successfully GT and SD states in 48Sc and
90Nb [3,13]. The electric dipole (E1) transitions between
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GT and SD states in 48Sc and 90Nb were also studied in
the same model [13]. In this paper, we study the GT and
SD states by using the self-consistent HF + TDA model
in 208Bi. Especially, we would like to clarify the physical
mechanism of the observed large width of SD strength
in comparison with theoretical results. In order to ob-
tain the effect of the continuum width, we calculate also
the coupling to the continuum of SD strength in the self-
consistent TDA model in the coordinate space. In section
2, we formulate the sum rules of GT and SD strength, and
that of E1 transitions between them. The results of the
self-consistent HF+TDA model are discussed in section 3.
A summary is given in section 4.

2 Sum rules for GT and SD strength and E1
transitions between them

Sum rules are useful tools to study collective nature of ex-
citation modes in many-body systems. Particularly, for the
charge exchange excitations, model independent sum rules
are derived and used to analyse experimental data. We
summarize various sum rules for spin-dependent charge
exchange excitations in the following. The operators for
GT, SD and E1 transitions are defined by

Ĝ± =
∑
im

τ i
±σi

m ,
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Ŝ± =
∑
imµ

τ i
±σi

mriY
µ
1 (r̂i) ,

D̂ =
∑
iµ

1
2
τ3riY

µ
1 (r̂i) , (1)

respectively, with the isospin operators τ3 = τz, τ± =
1
2 (τx ± iτy). The model independent sum rule for the GT
transitions is expressed as

G− − G+ =
∑
i∈all

|〈i| Ĝ−|0〉|2 −
∑
i∈all

|〈i| Ĝ+|0〉|2

= 〈0| [Ĝ−, Ĝ+]|0〉 = 3(N − Z) (2)

The model independent sum rule for the SD λ-pole oper-
ator Ŝλ

± =
∑

i τ i
± ri[σ × Y1(r̂i)]λ also can be derived to

be

Sλ
−−Sλ

+=
∑
i∈all

|〈i| Ŝλ
−|0〉|2 −

∑
i∈all

|〈i| Ŝλ
+|0〉|2

= 〈0| [Ŝλ
−, Ŝλ

+]|0〉 =
(2λ+ 1)
4π

(N〈r2〉n − Z〈r2〉p).
(3)

An analytic formula for the total E1 transition rates be-
tween GT and SD states is derived in the TDA frame-
work [13] by using the doorway states,

|GT 〉 = 1√
NGT

Ĝ−|0〉 , (4)

|SD〉 = 1√
NSD

Ŝ−|0〉 , (5)

where |0〉 is the parent state and NGT = 〈0|Ĝ+Ĝ−|0〉 and
NSD = 〈0|Ŝ+Ŝ−|0〉 are the normalization factors. Then,
the total E1 transition rate can be evaluated within the
1p-1h configuration space as

S1p−1h = |〈0|Ŝ+D̂Ĝ−|0〉|2/[〈0|Ĝ+Ĝ−|0〉〈0|Ŝ+Ŝ−|0〉]
= [6〈0|D̂†D̂|0〉 − 〈0|Ŝ+Ŝ−|0〉]2

/[3(N − Z)〈0|Ŝ+Ŝ−|0〉] . (6)

It is interesting to notice that the total E1 transition rate
between the GT and SD states in the daughter nucleus is
related in eq. (6) to the rates of E1 and SD transitions in
the parent nucleus. The sum of all possible E1 transitions
from the GT state to 1p-1h and 2p-2h states was also
derived to be [13]:

SA =
∑
i∈all

|〈i|D̂Ĝ−|0〉|2 1
NGT

= 〈0|Ĝ+D̂†D̂Ĝ−|0〉/〈0|Ĝ+Ĝ−|0〉
= 〈0|D̂†D̂|0〉 (7)

One can see in eq. (7) that the sum of the E1 transi-
tion strength from the GT state is equal to that from the
ground state in the parent nucleus.
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Fig. 1. GT and SD states calculated by discrete HF+TDA
model with SIII interaction: (a) GT transition strength from
the parent ground state 208Pb to GT states in 208Bi. (b) SD
transition strength from the parent ground state 208Pb to SD
states in 208Bi. The excitation energy is measured from the
ground state of 208Pb.

3 Numerical results

Calculated results of GT and SD strengths in 208Bi ob-
tained by HF + TDA with the use of discrete basis and
the SIII interaction [15] are shown in fig. 1. We per-
formed also RPA calculations of GT and SD transitions
with discrete basis and found almost the same results
as those of TDA. Because of the large excess neutrons
in 208Pb, the backward amplitudes of RPA are blocked
for almost all GT and SD configurations. Calculated GT
state is located at energy of Ex = 18.8MeV with re-
spect to the parent, and 63.6 % of the total strength is
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Fig. 2. SD transition strength in 208Bi calculated by con-
tinuum HF+TDA model with SIII interaction. The dotted,
dashed and solid curves show the response of 0−, 1− and 2−, re-
spectively. The 2− state at Ex = 6.81MeV is below the proton
threshold and shown by a dashed line. The excitation energy
is measured from the ground state of 208Pb.

concentrated in the state. The energy obtained for the
GT state shows good agreement with the experimental
one, Ex = 19.2 ± 0.2MeV [8]. The SD strengths for 0−
and 1− states are concentrated in one state with more
than 40% probabilities, while that for 2− states are frag-
mented among many states. There are low-lying 2− states
at Ex = 6.8MeV and 12.7 MeV. These states are mainly
formed of π0h9/2ν0i−1

13/2 and π0i13/2ν0h−1
9/2 configurations,

respectively. The former state can have a large E1 transi-
tion matrix element with the GT state while the latter one
cannot (see fig. 4 also). Sum of the calculated SD strengths
are 160 fm2, 427 fm2 and 649 fm2 for J = 0−, 1− and
2− states, respectively. The ratio is roughly proportional
to 2J+1. The total sum of the strength gives 〈0|Ŝ†Ŝ|0〉 =
1236.4 fm2. Similar strength distributions with the energy
shift of about 2 MeV upward are obtained with the use
of the SGII interaction [2] for both the GT and SD states.
The model independent sum rule for the SD transitions
(3) can be given for 208Pb as

Sλ
− − Sλ

+ =



121 fm2 λ = 0− ,
363 fm2 λ = 1− ,
604 fm2 λ = 2− ,

(8)

using HF radii with SIII interaction. The Sλ
+ contributions

to the sum rule (8) are found to be 39 fm2 for 0−, 64 fm2

for 1− and 45 fm2 for 2−, respectively.
We have done also continuum HF+TDA calculations

in the coordinate space with the same SIII interaction.
Detailed descriptions of the model can be found else-
where [12]. Calculated results for SD strength are shown in
fig. 2. Characteristic features of the distribution and mag-
nitude of the strength are not altered from those obtained
by the discrete TDA calculations. The escape width Γ ↑ is
negligible below Ex ≈ 15MeV, while it becomes about a
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Fig. 3. Averaged SD transition strength (9) in 208Bi calcu-
lated with a weighting factor (10) for continuum HF+TDA
results in fig. 2. Experimental data are taken from [8]. The ab-
solute magnitude of the experimental data is in an arbitrary
unit. The excitation energy is measured from the ground state
of 208Pb.

few hundreds keV in the energy region Ex = (17–27)MeV.
We can see large peaks at around Ex = 30MeV for all J=
0−, 1− and 2− responses. Integrated transition strength
of each peak is 135 fm2 for 0−, 309 fm2 for 1− and 130
fm2 for 2− which exhausts 84%, 72 % and 20% of the cor-
responding total strength, respectively. We should notice
in fig. 2 that the high energy peaks obtain more strength
than the discrete TDA calculations due to the coupling
to the continuum. The widths of these peaks are about
1MeV, which are substantially larger that those of lower
energy peaks. Most of the SD strength distributes in a
wide energy region between Ex = 20 and 33 MeV, except
for the two low-lying 2− states at Ex = 6.8 and 12.7 MeV.
In fig. 3, the experimental data is shown together with

averaged results of continuum TDA calculations. The av-
eraged results are obtained by using a weighting factor ρ,

dB(SD)ave
dEx

=
∫
dB(SD)
dE′

x

ρ(E′
x − Ex)dE′

x (9)

where

ρ(E′
x − Ex) =

1
π

∆/2
(E′

x − Ex)2 + (∆/2)2
(10)

with ∆=2MeV. The calculated strength shows structure
of two peaks, in which the lower (higher) one is dom-
inated by 2− (1−) states. The height of 0 − peak is
about a factor two smaller than that of 1− centered at
Ex ∼ 30MeV. The low-lying 2− state at Ex = 12.7MeV
with single particle-hole nature is smeared out by the av-
eraging. Experimentally, a broad SD bump in 208Bi is
found recently by 208Pb(3He, t)208Bi reaction centered at
Ex = 24.8 ± 0.8MeV with a very large total width of
8.4±1.7MeV [8]. Because of relatively poor statistics of
the 208Pb(3He, t)208Bi reactions, it is rather difficult to
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Fig. 4. Electric dipole transition strength from the SD states
to the main GT state in 208Bi.

see detailed structure of SD strength in the experimental
spectra. On the average, however, the calculated results
show good agreement with the experimental observations
as far as the excitation energy and the width are concerned
though the two peak structure obtained by the calculation
is not seen in the observation. Notice that main part of
the calculated width is due to the Landau damping ef-
fect together with the coupling to the continuum. The
latter effect is at most 1MeV in the higher energy region
than Ex = 27MeV and plays a minor role on the width
of SD resonance. The effect of the coupling to the many-
particle many-hole states on the width might be simulated
by the weighting factor (10) with the width of ∆=2MeV.
A quantitative agreement between the calculated and the
empirical width suggests that the width Γ ↓ due to the
coupling to many-particle many-hole states will be a mag-
nitude of 2MeV in the case of SD resonances in 208Bi. The
absolute strength of the experimental data is shown in an
arbitrary unit in fig. 3 since the sum rule value is not yet
reported.
In 90Zr, the SD strengths have been studied with RPA

model including 2p-2h states [16]. It was found that mix-
ing between 1p-1h and 2p-2h states results in a large asym-
metric spreading of the strength of the SD resonances,
with about 30% of the total strength shifted to excitation
energies greater than 35 MeV.
Calculated E1 transition strengths from the SD states

to the GT state at Ex = 18.83MeV obtained with the use
of the SIII interaction are shown in fig. 4. Here, the effec-
tive charge is taken to be N/A e for protons and −Z/A e
for neutrons. The SD strength for 1− is concentrated al-
most in one state at Ex = 28.5MeV with 63% probability.
For 0−, most of the strength is found among a few states at
Ex ∼ 30MeV. For 2−, half of the strength is fragmented
among many states at Ex = 15 ∼ 30MeV while a state at
Ex = 6.8MeV exhausts 53% of the strength.

Sum of the E1 strength for each multipole is calcu-
lated to be 0.920 fm2, 0.531 fm2 and 0.548 fm2 for 0−,
1− and 2−, respectively. The value S1p−1h in eq. (6) is
equal to 2.40 fm2 as one obtains 〈0|D̂†D̂|0〉 = 101.7 fm2

for the total E1 transition rate in 208Pb and 〈0|Ŝ+Ŝ−|0〉 =
1236.4 fm2 for the sum of the SD strengths in 208Pb . The
total E1 transition strength from the collective GT state
at Ex = 18.8MeV to all the SD states is 1.750 fm2, which
amounts to be 72.9 % of the sum rule S1p−1h in eq. (6).
The transition rate from the GT state at Ex = 18.8MeV
to the each SD multipole is 17.5 %, 30.3 % and 52.2 %
of the total rate (= 1.750 fm2) for 0−, 1− and 2−, re-
spectively. Strong E1 transition rates are calculated to be
0.34 ∼ 0.49 e2fm2, which are 15 ∼ 22% of the Weisskopf
unit (2.26 e2fm2) for 208Bi. This order of magnitude of
the transition strength might be easily accessed experi-
mentally. We should notice that the sum rule SA of (7)
for the 1p-1h and 2p-2h model space is 101.7fm2, which is
much larger than that within the 1p-1h model space. Thus
the predicted E1 strength in fig. 4 might be altered sig-
nificantly by the effect of 2p-2h states. The measurement
of E1 strength from SD states might show clear empirical
information of the 2p-2h states in 208Bi, which couple to
both SD and GT states.
Finally, we comment on Brink’s hypothesis [17] in

which giant resonances can be built on top of any excited
state besides the ground state. SD states can be consid-
ered as giant dipole states (GDR) on top of the excited
GT states. The experimental systematic energy of GDR is
given by Ex = 78/A1/3 MeV, which is 13.2 MeV for 208Bi.
The major E1 strength is found at around Ex = 30MeV
in fig. 4, which is about 12 MeV above the GT state and
close to the experimental energy of GDR measured from
the GT states. Although Brink’s hypothesis [17] seems to
be valid in the present case, we should make a study in-
cluding 2p-2h configurations to draw a definite conclusion.

4 Summary

We have investigated the GT and SD states in 208Bi us-
ing the self-consistent HF + TDA model within the 1p-1h
configuration space both with the discrete basis and with
the coupling to the continuum. The calculated excitation
energy of main GT state is at 18.8MeV which agrees with
the experimental peak at 19.2 ±0.2MeV. We showed also
that the calculated SD strength gives good agreement with
the observed data by 208Pb(3He, t)208Bi as far as the ex-
citation energy and the width are concerned. The Landau
damping effect is shown to be highly responsible for the
large observed width of SD resonance, while the couplings
to the continuum and to the many-particle and many-
hole states play minor roles. The E1 transition strength
between the GT and SD states is evaluated in the same
TDA model. The total E1 strength from the GT to all
the SD states is found to be 1.75 fm2 within the 1p-1h
model, which is about 1 Weisskopf unit of E1 transition.
Possible observed E1 strength might be significantly en-
hanced due to the effect of 2p-2h states as is expected from
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much larger value of the total E1 sum rule SA compared
to that of S1p−1h in 1p-1h model space. The experimental
observation of the E1 transitions will be useful to obtain
information on 2p-2h configurations which couple to SD
and GT states.
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